Phosphorylation Status of RNA Polymerase II Carboxyl-terminal Domain in Porcine Oocytes and Early Embryos

نویسندگان

  • Reza K. Oqani
  • Jin Yu Zhang
  • Min Gu Lee
  • Yun Fei Diao
  • Dong-Il Jin
چکیده

Fertilization of the oocyte commences embryogenesis during which maternally inherited mRNAs are degraded and the embryonic genome is activated. Transcription of embryonic mRNA is initiated by embryonic genome activation (EGA). RNA polymerase II (RNA Pol II) is responsible for the synthesis of mRNAs and most small nuclear RNAs, and consists of 12 subunits, the largest of which characteristically harbors a unique C-terminal domain (CTD). Transcriptional activity of RNA Pol II is highly regulated, in particular, by phosphorylation of serine residues in the CTD. Here, we have shown the presence of RNA Pol II CTD phosphoisoforms in porcine oocytes and preimplantation embryos. The distribution pattern as well as phosphorylation dynamics in germinal vesicles and during embryogenesis differed in developmental stages with these isoforms, indicating a role of RNA Pol II CTD phosphorylation at the serine residue in transcriptional activation during both oocyte growth and embryonic genome activation. We additionally examined the effects of the RNA Pol II inhibitor, α-amanitin, on embryo development. Our results show that inhibition of polymerase, even at very early stages and for a short period of time, dramatically impaired blastocyst formation. These findings collectively suggest that the functionality of maternal RNA Pol II, and consequently, expression of early genes regulated by this enzyme are essential for proper embryo development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear translocation and carboxyl-terminal domain phosphorylation of RNA polymerase II delineate the two phases of zygotic gene activation in mammalian embryos.

In mammalian embryos, zygotic gene transcription initiates after a limited number of cell divisions through a two-step process termed the zygotic gene activation (ZGA). Here we report that RNA polymerase II undergoes major changes in mouse and rabbit preimplantation embryos during the ZGA. In transcriptionally inactive unfertilized oocytes, the RNA polymerase II largest subunit is predominantly...

متن کامل

Transcription-independent RNA polymerase II dephosphorylation by the FCP1 carboxy-terminal domain phosphatase in Xenopus laevis early embryos.

The phosphorylation of the RNA polymerase II (RNAP II) carboxy-terminal domain (CTD) plays a key role in mRNA metabolism. The relative ratio of hyperphosphorylated RNAP II to hypophosphorylated RNAP II is determined by a dynamic equilibrium between CTD kinases and CTD phosphatase(s). The CTD is heavily phosphorylated in meiotic Xenopus laevis oocytes. In this report we show that the CTD undergo...

متن کامل

Nanos downregulates transcription and modulates CTD phosphorylation in the soma of early Drosophila embryos

nanos (nos) specifies posterior development in the Drosophila embryo by repressing the translation of maternal hb mRNA. In addition to this somatic function, nos is required in the germline progenitors, the pole cells, to establish transcriptional quiescence. We have previously reported that nos is required to keep the Sex-lethal establishment promoter, Sxl-Pe, off in the germline of both sexes...

متن کامل

Ubiquitination of RNA polymerase II large subunit signaled by phosphorylation of carboxyl-terminal domain.

A sensitive assay using biotinylated ubiquitin revealed extensive ubiquitination of the large subunit of RNA polymerase II during incubations of transcription reactions in vitro. Phosphorylation of the repetitive carboxyl-terminal domain of the large subunit was a signal for ubiquitination. Specific inhibitors of cyclin-dependent kinase (cdk)-type kinases suppress the ubiquitination reaction. T...

متن کامل

Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster.

Early embryonic germ cells in C. elegans and D. melanogaster fail to express many messenger RNAs expressed in somatic cells. In contrast, we find that ribosomal RNAs are expressed in both cell types. We show that this deficiency in mRNA production correlates with the absence of a specific phosphoepitope on the carboxy-terminal domain of RNA polymerase II. In both C. elegans and Drosophila embry...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2012